Biomedicine: Move over, morphine

Techniques that work for YOU
Post Reply
User avatar
Posts: 845
Joined: Wed Jun 18, 2003 10:09 pm
Injury Description, Date, extent, surgical intervention etc: Date of Injury: 12/15/02

Level of Injury:
-dominant side C5, C6, & C7 avulsed. C8 & T1 stretched & crushed

BPI Related Surgeries:
-2 Intercostal nerves grafted to Biceps muscle,
-Free-Gracilis muscle transfer to Biceps Region innervated with 2 Intercostal nerves grafts.
-2 Sural nerves harvested from both Calves for nerve grafting.
-Partial Ulnar nerve grafted to Long Triceps.
-Uninjured C7 Hemi-Contralateral cross-over to Deltoid muscle.
-Wrist flexor tendon transfer to middle, ring, & pinky finger extensors.

Surgical medical facility:
Brachial Plexus Clinic at The Mayo Clinic, Rochester MN
(all surgeries successful)

"Do what you can, with what you have, where you are."
~Theodore Roosevelt
Location: Los Angeles, California USA

Biomedicine: Move over, morphine

Post by Christopher » Thu Aug 04, 2016 6:26 pm

this sounds better than the average SCS, as I've read multiple cases of electrode implants moving after surgery debilitating the SCS's function.

Biomedicine: Move over, morphine ... 35S4a.html ... anagement/

"Spinal cord stimulation was first trialled in 1967, but it has usually been a treatment of last resort. This is because the simple implants tend to move relative to the spinal cord as the patient moves — even when they breathe. The target nerve is therefore frequently under- or over-stimulated, and neighboring nerves are hit, too. “You tend to pick up nerves to the ribs, which can be very painful,” says Brooker. So people with the implant often turn it down, or even off.

The device that Brooker implanted in Grewal is more sophisticated. Created by start-up company Saluda Medical in Artarmon, Australia, the device overcomes the problem of electrode movement by continually reading the electrical activity induced in the target nerve, and adjusting its output to keep nerve stimulation within the therapeutic range.

Saluda had already demonstrated the concept's potential using temporary implants, and in October 2015 the company began a multinational three-year clinical trial of permanent devices — which Grewal was part of. While this is taking place, the company is continuing to improve the device, including miniaturizing it. “Making it half as big is not out of the question,” says senior vice-president Dan Brounstein.

The Saluda device has impressed pain researchers. “In theory, it's a very significant development,” says Russo, whose pain clinic is participating in the trial. It used to be impossible to know how much of the time the correct level of activation was being delivered to the target nerve. “With this device, it's close to 100% of the time,” says Russo."

"As the technology has improved, so has the clinical knowledge of which patients will benefit. Those with neuropathic pain from damaged nerves respond the best. “For many years, we were able to achieve 50% of patients achieving 50% pain reduction,” Russo says. In the past 4 years, several clinical studies have got close to 75% of patients achieving 75% pain relief. “Once you get to those figures, it no longer makes sense to be a treatment of last resort.”"

Post Reply

Who is online

Users browsing this forum: No registered users and 1 guest